Abstract

It is by now well established that periodically driven quantum many-body systems can realize topological nonequilibrium phases without any equilibrium counterpart. Here we show that, even in the absence of time translation symmetry, nonequilibrium topological phases of matter can exist in aperiodically driven systems for tunably parametrically long prethermal lifetimes. As a prerequisite, we first demonstrate the existence of longlived prethermal Anderson localization in two dimensions under random multipolar driving. We then show that the localization may be topologically nontrivial with a quantized bulk orbital magnetization even though there are no well-defined Floquet operators. We further confirm the existence of this anomalous random multipolar driven insulator by detecting quantized charge pumping at the boundaries, which renders it experimentally observable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.