Abstract
In a spin-correlated radical pair system, anomalous pulse-angle and phase dependence of electron spin echo and multiple-quantum echoes were theoretically calculated by Tanget al. (J. Chem. Phys.106, 7471 (1997)). The maximum intensity of the out of phase signal at 45 degree of spin rotation angle was experimentally verified in two-pulse echoes of the light-induced P700+A1− radical pair in Photosystem I. The values,D = 1.64 G andJ = 0.00 G, fit well with the experimental ESEEM spectra. Single and double quantum echoes were observed at the value oft = τ andT = 2τ with the laser flash-t-P170,ζ1-τ-P2140, ζ2-T pulse sequence, which led to determination of the relaxation time T23 between the singlet and triplet ¦T0〉 states. The relaxation times of the zero and single quantum transitions were determinedT23 ≈ 100 ns andT2 = 1000 ns, respectively. The field sweep ESE signal shape can be fitted with the hyperfine inhomogeneities of 7 G for P700+ and of 10 G for A1−.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.