Abstract
First-principles calculations are performed to predict structural, electric, magnetic, and magnetoelectric properties of hexagonal rare-earth ferrites (RFeO${}_{3}$) under chemical and hydrostatic pressures. Decreasing the rare-earth ionic radius has two dramatic consequences: (i) an enhancement of the electrical polarization by a factor of 60% and (ii) a magnetic transition, which renders the systems (weakly) ferromagnetic. Moreover and unlike conventional ferroelectrics, the electrical polarization strengthens as a hydrostatic pressure is applied and increases in magnitude in any hexagonal rare-earth ferrites. Finally, applying a hydrostatic pressure in RFeO${}_{3}$ having small or intermediate rare-earth ionic radius results in the sudden disappearance of a weak magnetization and of the linear magnetoelectric effect above some critical pressure. Origins of these striking effects are revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.