Abstract
Unusually large (5 cm) and prolonged shaking associated with long- period ground motions at periods of about 7 sec were observed in central Tokyo during the Mw 6.6 Niigata-ken Chuetsu earthquake of 23 October 2004. The long- period ground motions caused significant resonance in high-rise buildings of about 70 floors in height. Thus, it is an urgent matter to understand the development and amplification properties of long-period ground motions in Tokyo associated with large earthquakes. In this study, we use numerous waveform records from 585 stations in a nationwide accelerometer network (K-NET, KiK-net) and 495 intensity meters in the area around Tokyo. The data reveal that the long-period ground motion is characterized in most part by a surface, Rayleigh wave generated at the northern edge of Kanto basin, and the surface wave is developed as propagating through a thick cover of sediments (3000-4000 m) that overlies rigid bedrock. To complement the observational data, we conducted a large-scale computer simu- lation of seismic-wave propagation by employing the Earth Simulator supercomputer with a detailed source-slip model and a high-resolution 3D sedimentary structural model of central Japan. The results of the computer simulation demonstrate that the anomalously prolonged ground shaking of the long-period signal recorded in the center of Tokyo occurred because of the stagnation of seismic energy resulting from the multipathing and focusing of Rayleigh waves toward the bottom of the Kanto basin from surrounding mountain regions with interaction to the 3D basin structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.