Abstract
GaN based materials are believed to be very stable materials, in particular, under irradiation by high energy photons such as x rays. We have studied x-ray detectors based on GaN Schottky diodes. Vertical Schottky diodes were fabricated based on a 20μm thick undoped GaN layer grown on a conductive GaN substrate. Their photoresponse to near UV light and to x rays was measured. While the response to near UV light was fast and linear as expected, anomalous behaviors were observed under x-ray illumination. The photocurrent increases as the third power of the incident x-ray flux. The photocurrent transient when the x rays is turned on are long and nonexponential (S shape) and strongly differs from the off transient which is fast and exponential. Also, a very strong quenching of the x-ray photoresponse is observed when the detector is simultaneously illuminated with visible light. All of these anomalous behaviors are explained in the frame of a complete model involving traps and tunnel currents. A reasonable quantitative agreement between the model and the experimental data is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.