Abstract

Single crystal 3C-SiC epitaxial films are grown on Si(111) surfaces using tetramethylsilane by rapid thermal chemical vapor deposition. Strong blue/green photoluminescence (PL) was observed at room temperature from the free films of SiC prepared by etching the Si substrate. The main PL peak energy varies from 2.1 to 2.4 eV with full widths at half-maximum between 450 and 500 meV, depending on the growth condition, excitation wavelength and excitation light intensity. A weak peak at 3.0 eV also appeared. The infrared (IR) spectra of free films of SiC exhibit modes associated with CH and OH groups. We also compared PL characteristics of free films of SiC with those from porous SiC produced by anodization of SiC/Si to determine the origin of the PL. Porous SiC shows a PL peak centered at 1.9 eV, different from those in SiC. From the analysis of the IR spectra and scanning electron microscopic images, we tentatively suggest that the origin of the PL from free films of SiC might be associated with an OH group adsorbed on defects or some localized states as is the case for an amorphous SixC1−x alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.