Abstract
Topological Weyl semimetals (WSMs) have attracted widespread interests due to the chiral Weyl fermions and surface Fermi arcs that enable unique optical and transport phenomena. In this work, we present angle-resolved Raman spectroscopy of TaP, a prototypical noncentrosymmetric WSM, for five excitation wavelengths ranging from 364 to 785 nm. The Raman active modes, $A_1$, $B_1^1$, and $B_1^2$ modes, exhibit two main unique features beyond the conventional Raman theory. First, the relative intensities of Raman active modes change as a function of the excitation wavelength. Second, angle-resolved polarized Raman spectra show systematic deviation from the Raman tensor theory. In particular, the $B_1^1$ mode is absent for 633 nm excitation, whereas the $B_1^2$ mode shows an unusual two-fold symmetry instead of a four-fold symmetry for 488, 532, and 633 nm excitations. These unconventional phenomena are attributed to the interference effect in the Raman process owing to the existence of multiple carrier pockets with almost the same energy but different symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.