Abstract

A necessary condition for the damping of the long-wavelength excitations of the superfluid phase (referred to as superfluid phonons) due to the three-particle process is to have an anomalous phonon dispersion. The existence of anomalous phonon dispersion has been confirmed in superfluid \(^4\mathrm {He}\). There are no experimental data suggesting that this phenomenon exists in superfluid Fermi gases. To the best of our knowledge, the existence of anomalous dispersion has been theoretically predicted only in atomic spin balanced Fermi gas close to the unitarity limit. The numerical results reported here suggest that the anomalous long-wavelength dispersion can be realized in mass and spin imbalanced atomic Fermi gases away from the unitary limit. In particular, the numerical solution of the Bethe–Salpeter equation in a weak-coupling regime shows that the long-wavelength part of the collective-mode dispersion of the superfluid Fulde–Ferrell phase of a mixture of population-imbalanced Lithium-6 and Potassium-40 atoms in a square lattice at some values of polarization, interacting strength and temperature initially bends upward before bending over.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.