Abstract

SignificancePhase separation is crucial to the functionalities of many correlated electron materials with notable examples including colossal magnetoresistance in manganites and high-Tc superconductivity in cuprates. However, the nonequilibrium phase-separation dynamics in such systems are poorly understood theoretically, partly because the required multiscale modeling is computationally very demanding. With the aid of machine-learning methods, we have achieved large-scale dynamical simulations in a representative correlated electron system. We observe an unusual relaxation process that is beyond the framework of classical phase-ordering theories. We also uncover a correlation-induced freezing behavior, which could be a generic feature of phase separation in correlated electron systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.