Abstract

Carbon nanorings are hoop-shaped, π-conjugated macrocycles that form the fundamental annular segments of single-walled carbon nanotubes (SWNTs). In a very recent report, the structures of chiral carbon nanorings (which may serve as chemical templates for synthesizing chiral nanotubes) were experimentally synthesized and characterized for the first time. Here in our Letter we show that the excited-state properties of these unique chiral nanorings exhibit anomalous and extremely interesting optoelectronic properties with excitation energies growing larger as a function of size (in contradiction with typical quantum confinement effects). Although the first electronic excitation in armchair nanorings is forbidden with a weak oscillator strength, we find that the same excitation in chiral nanorings is allowed because of a strong geometric symmetry breaking. Most importantly, among all the possible nanorings synthesized in this fashion, we show that only one ring, corresponding to a SWNT with chiral indices (n+3,n+1), is extremely special with large photoinduced transitions that are most readily observable in spectroscopic experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.