Abstract
Abstract This paper aims to investigate particle dynamics in a random environment, subjected to power-law time-dependent temperature. To this end, the scaled Brownian motion (SBM), a stochastic process described by a diffusion equation with time-dependent diffusivity, has been studied numerically in quenched disordered systems (QDLs). Here, QDLs have been modeled by spatial correlated Gaussian random potential with an exponential normalized correlation function. Results show nonergodic non-Gaussian subdiffusion for subdiffusive SBM. While a crossover from non-Gaussian Brownian diffusion to long-time Gaussian superdiffusion has been observed for the superdiffusive SBM scenario. Furthermore, the first passage time to an object significantly depends on the governing SBM regime and its scale parameter, where the first passage time becomes faster with the increasing scale parameter. The mechanism underlying these behaviors has been uncovered numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.