Abstract

This paper reports calculations of temperature and magnetic field dependent thermal and optical activation energies of a shallow donor state and the energy of the conduction band edge in a ferromagnetic semiconductor. The formation of the bound magnetic polaron (BMP), i.e., a magnetically polarized cluster associated with the donor electron, is taken into account. The solution of a set of coupled equations for the energy of a donor electron and for the local non-uniform magnetization around the donor center indicates that the activation energies have their maxima near the Curie temperature and decrease with the application of a magnetic field. This decrease leads to a strong magnetic field dependence of the charge carrier density nc explains well the giant negative magnetoresistance of EuSe observed experimentally at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call