Abstract

This paper is a theoretical study of the spectral features of the velocity of light-induced drift (LID) of lithium atoms (7Li and 6Li) in a binary mixture of noble gases: Ne + Ar, Ne + Kr, and Ne + Xe. The spectral shape of the LID signal is predicted to depend strongly on the fraction ξ of neon in the buffer mixture in the range ξ≈0.8–0.9 (ξ=NNe/Nb, where NNe is the neon concentration, and Nb is the total concentration of the buffer particles). When the velocity of anomalous LID is treated as a function of the radiation frequency, it is found to have one, three, five, or seven zeros and to differ substantially from the dispersion-curve-like behavior with one zero predicted by the standard LID theory with velocity-independent transport collision rates. The reason for these additional zeros of the drift velocity is the alternating-sign dependence on the lithium-atom velocity of the relative difference of transport rates of collisions between buffer particles and excited and unexcited atoms. What is also established is that the anomalous LID of lithium atoms can be observed at almost all temperatures, depending on the value of ξ. At a fixed temperature, anomalous LID can be observed only in a narrow range of values of the fraction of neon in the buffer mixture, Δξ≈0.02. The results make possible highly precise testing in the LID experiments of the interatomic potentials used in calculations of the velocity spectrum of anomalous LID.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call