Abstract

Based on the Bogoliubov–de Gennes equation and the extended McMillan’s Green’s function formalism, we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin–orbit coupling and Zeeman splitting. We show that due to the interplay of Rashba spin–orbit coupling and Zeeman splitting and d-wave pairing, the current–phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned. In particular, anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken, which can be realized by tuning some relevant parameters of the system, including the relative orientations and the strengths of the Zeeman field and the spin–orbit field in the bridge region, the relative orientations of the a axes in two superconductor leads, or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads. We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.