Abstract

We performed molecular dynamics simulations of the hydration of Na+ and K+ in infinitely long single-walled armchair carbon nanotubes (CNTs) at 298 K. Simulation results indicate that the preferential orientation of water molecules in coordination shells of these two cations presents an anomalous change in the CNTs and causes a diameter-dependent variation for the interaction energy between the cation and water molecules in its coordination shell. In the five CNTs of this work, it is energetically favorable for confining a hydrated K+ inside the two narrow CNTs with diameters of 0.60 and 0.73 nm, whereas the situation is reverse inside the wide CNTs with diameters of 0.87, 1.0, and 1.28 nm. This finding is important for CNT applications in ionic systems that control the selectivity and the ionic flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.