Abstract

We report an unusual magnetoresistance that strengthens with the temperature in a dilute two-dimensional (2D) hole system in GaAs/AlGaAs quantum wells with densities p=1.98-0.99×10^{10}/cm^{2} where r_{s}, the ratio between Coulomb energy and Fermi energy, is as large as 20-30. We show that, while the system exhibits a negative parabolic magnetoresistance at low temperatures (≲0.4 K) characteristic of an interacting Fermi liquid, a positive magnetoresistance emerges unexpectedly at higher temperatures, and grows with increasing temperature even in the regime T∼E_{F}, close to the Fermi energy. This unusual positive magnetoresistance at high temperatures can be attributed to the viscous transport of 2D hole fluid in the hydrodynamic regime where holes scatter frequently with each other. These findings give insight into the collective transport of strongly interacting carriers in the r_{s}≫1 regime and new routes toward magnetoresistance at high temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.