Abstract

Constructing heterostructures of a topological insulator (TI) with an undoped magnetic insulator (MI) is a clean and versatile approach to break the time-reversible symmetry in the TI surface states. Despite a lot of efforts, the strength of interfacial magnetic proximity effect (MPE) is still too weak to achieve the quantum anomalous Hall effect and many other topological quantum phenomena. Recently, a new approach based on intercalation of atomic layers of MI, referred to as magnetic extension, was proposed to realize strong MPE [2D Mater. 4, 025082(2017)]. Motivated by this proposal, here, we study a magnetic extension system prepared by molecular beam epitaxy growth of MnSe thin films on topological insulator (Bi,Sb)2Te3. Direct evidence is obtained for intercalation of MnSe atomic layer into a few quintuple layers of (Bi,Sb)2Te3, forming either a double magnetic septuple layer (SL) or an isolated single SL at the interface, where one SL denotes a van der Waals building block consisting of B-A-B-Mn-B-A-B (A=Bi1-xSbx, B= Te1-ySey). The two types of interfaces (namely TI/mono-SL and TI/bi-SL) have different MPE, which is manifested as distinctively different transport behaviors. Specifically, the mono-SL induces a spinflip transition with a sharp change at small magnetic field in the anomalous Hall effect of TI layers, while the bi-SL induces a spin-flop transition with a slow change at large field. Our work demonstrates a useful platform to realize the full potential of the magnetic extension approach for pursuing novel topological physics and related device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call