Abstract
Toward drastic enhancement of thermoelectric power factor, quantum confinement effect proposed by Hicks and Dresselhaus has intrigued a lot of researchers. There has been much effort to increase power factor using step-like density-of-states in two-dimensional electron gas (2DEG) system. Here, we pay attention to another effect caused by confining electrons spatially along one-dimensional direction: multiplied 2DEG effect, where multiple discrete subbands contribute to electrical conduction, resulting in high Seebeck coefficient. The power factor of multiple 2DEG in GaAs reaches the ultrahigh value of ~100 μWcm-1 K-2 at 300 K. We evaluate the enhancement rate defined as power factor of 2DEG divided by that of three-dimensional bulk. The experimental enhancement rate relative to the theoretical one of conventional 2DEG reaches anomalously high (~4) in multiple 2DEG compared with those in various conventional 2DEG systems (~1). This proposed methodology for power factor enhancement opens the next era of thermoelectric research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.