Abstract

In this work, we analyze anomalous effects observed in the operation of two different technological devices: a magnetic core and a parallel plate (symmetrical or asymmetrical) capacitor. From experimental measurements on both devices, we detected small raised anomalous forces that cannot be explained by known interactions in the traditional theories. So, we verify that magnetic cores also exhibits an effect similar to BB effect in capacitors. As the variations of device inertia have not been completely understood by means of current theories, we here propose a theoretical framework in which the anomalous effects can consistently be explained by a preexisting state of quantum entanglement between the external environment and either magnetic dipoles of magnetic cores or electric dipoles of capacitors, so that the effects would be manifested by the application of a strong magnetic field on the former or an intense electric field on the latter. The values of the macroscopic observables calculated in such a theoretical framework revealed good agreement with the experimental measurements performed in both cases, so that the non-locality hypothesis based on the generalized quantum correlation between dipoles and environment is consistent as explanation for the anomalous effects observed. The control and enhancement of the effect can allow the future viability of a new technology based on electric propulsion of rockets and aircrafts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.