Abstract

We consider an atom moving in a near resonant laser field with its dipole strongly coupled to a resonator field mode. As compared to the standard Doppler shift, we find a substantially different and counterintuitive linear velocity dependence of the light scattering properties. The mechanical force of the laser field exhibits strong velocity selectivity at a polariton resonance, which gives rise to an enhanced friction force and Doppler cooling even in the directions perpendicular to the resonator axis. This effect allows for sub-Doppler cooling of atoms even with a nondegenerate ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.