Abstract

We have investigated the anomalously weak binding of human papillomavirus (HPV) regulatory protein E2 to a DNA target containing the spacer sequence TATA. Experiments in magnesium (Mg2+) and calcium (Ca2+) ion buffers revealed a marked reduction in cutting by DNase I at the CpG sequence in the protein-binding site 3′ to the TATA spacer sequence, Studies of the cation dependence of DNA-E2 affinities showed that upon E2 binding the TATA sequence releases approximately twice as many Mg2+ ions as the average of the other spacer sequences. Binding experiments for TATA spacer relative to ATAT showed that in potassium ion (K+) the E2 affinity of the two sequences is nearly equal, but the relative dissociation constant (Kd) for TATA increases in the order K+ < Na+ < Ca2+ < Mg2+. Except for Mg2+, Kd for TATA relative to ATAT is independent of ion concentration, whereas for Mg2+ the affinity for TATA drops sharply as ion concentration increases. Thus, ions of increasing positive charge density increasingly distort the E2 binding site, weakening the affinity for protein. In the case of Mg2+, additional ions are bound to TATA that require displacement for protein binding. We suggest that the TATA sequence may bias the DNA structure towards a conformation that binds the protein relatively weakly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.