Abstract

We consider a generic time-reversal invariant model of fermions hopping randomly on a square lattice. By means of the conventional replica-trick within the fermionic path-integral formalism, the model is mapped onto a non-linear σ-model with fields spanning the coset U ( 4 N ) / Sp ( 2 N ) , N → 0 . We determine the proper scaling combinations of an infinite family of relevant operators which control deviations from perfect two-sublattice symmetry. This allows us to extract the low-energy behavior of the density of states, which agrees with earlier results obtained in particular two-sublattice models with Dirac-like single-particle dispersion. The agreement proves the efficacy of the conventional fermionic-path-integral approach to disordered systems, which, in spite of many controversial aspects, like the zero-replica limit, remains one of the more versatile theoretical tool to deal with disordered electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.