Abstract

Much of the recent renewed interest in percolation theory is related to the realization that percolation clusters are self-similar,1 and may thus be modeled by fractal structures.2 On a fractal structure, all the physical properties behave as powers of the relevant length scale, L. This behavior crosses over to a homogeneous one (i.e. independent of L, for appropriately defined quantities), on length scales larger than the percolation connectedness (or correlation) length, ξ∝|p−pc|−v. Assuming that ξ is the only important length in the problem, all other lengths should be measured in units of ξ, and thus depend on L only via the ratio L/ξ. This implies scaling. For example, above the percolation threshold (p≥pc) one has1 $$M\left( L \right) = {L^D}m\left( {L/\zeta } \right)$$ (1) for the number of sites on the infinite incipient cluster within a volume of linear size L. The exponent D is the fractal dimensionality 2 of the cluster in the self-similar regime, and the scaling function m(x) behaves as a constant for x→0 and as m(x)∿xβ/v for x»1, so that M(L)∿LdP∞. Here, d is the Euclidean dimensionality of space, and P∞ ∿ ξ−β/v ∿ (p−pc)β is the probability per site to belong to the infinite cluster. Thus, one identifies D=d−β/v.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.