Abstract
We present exact analytical results for properties of anomalous diffusion on a fractal mesh. The fractal mesh structure is a direct product of two fractal sets, one belonging to a main branch of backbones, the other to the side branches of fingers. Both fractal sets are constructed on the entire (infinite) y and x axes. We suggest a special algorithm in order to construct such sets out of standard Cantor sets embedded in the unit interval. The transport properties of the fractal mesh are studied, in particular, subdiffusion along the backbones is obtained with the dispersion relation 〈x^{2}(t)〉≃t^{β}, where the transport exponent β<1 is determined by the fractal dimensions of both backbone and fingers. Superdiffusion with β>1 has been observed as well when the environment is controlled by means of a memory kernel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.