Abstract

Transport of deformable particles in a honeycomb network is studied numerically. It is shown that the particle deformability has a strong impact on their distribution in the network. For sufficiently soft particles, we observe a short memory behavior from one bifurcation to the next, and the overall behavior consists in a random partition of particles, exhibiting a diffusionlike transport. On the contrary, stiff enough particles undergo a biased distribution whereby they follow a deterministic partition at bifurcations, due to long memory. This leads to a lateral ballistic drift in the network at small concentration and anomalous superdiffusion at larger concentration, even though the network is ordered. A further increase of concentration enhances particle-particle interactions which shorten the memory effect, turning the particle anomalous diffusion into a classical diffusion. We expect the drifting and diffusive regime transition to be generic for deformable particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call