Abstract
Thermoresponsive materials exhibit an enormous potential for tissue engineering, separation systems, and drug delivery. We investigated the diffusion of laponite clay nanoparticles, which serve as physical cross-linkers to achieve improved material properties in poly(N-isopropylacrylamide) (PNIPAM)-clay composite hydrogels close to the gel point. The networks are formed through physical interactions between PNIPAM chains and clay nanoparticles after these two components are mixed. In contrast to previous studies, a covalent labeling strategy was chosen to minimize the amount of free dyes in solution. Single-particle tracking of the labeled clay nanoparticles showed that their diffusion is anomalous at all temperatures used in this study, reflecting the viscoelastic behavior as a cross-linker. Stepwise heating from 24 to 38 °C resulted in a slight increase of the diffusion coefficient and the anomality parameter α up to the volume phase transition temperature of ca. 31 °C, which was followed by a significant drop of both parameters, reflecting strongly hindered motion of the collapsed nanoparticle aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.