Abstract

Models with mixed origins of anomalous subdiffusion have been considered important for understanding transport in biological systems. Here one such mixed model, the quenched-trap model (QTM) on fractal lattices, is investigated. It is shown that both ensemble- and time-averaged mean-square displacements (MSDs) show subdiffusion with different scaling exponents, i.e., this system shows weak ergodicity breaking. Moreover, time-averaged MSD exhibits aging and converges to a random variable following the modified Mittag-Leffler distribution. It is also shown that the QTM on a fractal lattice cannot be reduced to the continuous-time random walks if the spectral dimension of the fractal lattice is less than 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.