Abstract

Diffusion processes occurring in a myriad of systems sparkle great interest in understanding their general properties and applications. In this work, we investigate a broad set of diffusive systems that can be governed by a generalized diffusion equation and subjected to a surface that can promote sorption and, consequently, desorption, thus releasing the particles to the bulk. The general bulk equation used here can reproduce different diffusive regimes, among them, those described by the Cattaneo equation or by a fractional, anomalous diffusion. The equation related to the processes on the surface incorporates non-Debye relaxations which can be used to model non-exponential relaxations commonly found in biological or fractal systems. The solutions are obtained by using the Green function approach and show a rich class of behavior that can be related to anomalous diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.