Abstract
The dielectric and thermal properties of an antiferroelectric (AFE) material characterised by an intermediate ferroelectric (FE) phase between the AFE and paraelectric phase in zero field are studied by means of a generalised Landau–Kittel model of AFEs. A temperature-dependent coupling of the two sublattices is introduced in accordance with the Rae–Dove (RD) model of re-entrant phase transitions. The sublattice polarisation components are calculated as functions of temperature and the applied electric field by minimising numerically the free energy. The calculated dielectric susceptibility shows anomalies at the boundaries of the intermediate FE phase, characteristic for first-order phase transitions. It is shown that this behaviour is in qualitative agreement with the measured dielectric constant in Ba-doped PbZrO3 ceramics. The model also predicts a negative adiabatic electrocaloric temperature change in a broad temperature range in the AFE phase, in qualitative agreement with experiments. The dipolar heat capacity is also predicted to be negative in the intermediate phase in zero field, in analogy with the results of the RD model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.