Abstract

AbstractIndependent measurements of the volumetric and elastic properties of Columbia River basalt glass were made up to 5.5 GPa by high‐pressure X‐ray microtomography and GHz‐ultrasonic interferometry, respectively. The Columbia River basalt displays P and S wave velocity minima at 4.5 and 5 GPa, respectively, violating Birch's law. These data constrain the pressure dependence of the density and elastic moduli at high pressure, which cannot be modeled through usual equations of state nor determined by stepwise integrating the bulk sound velocity as is common practice. We propose a systematic variation in compression behavior of silicate glasses that is dependent on the degree of polymerization and arises from the flexibility of the aluminosilicate network. This behavior likely persists into the liquid state for basaltic melts resulting in weak pressure dependence for P wave velocities perhaps to depths of the transition zone. Modeling the effect of partial melt on P wave velocity reductions suggests that melt fraction determined by seismic velocity variations may be significantly overestimated in the crust and upper mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.