Abstract

We summarize recent attempts to unravel the role of plasma kinetic effects in radiation mediated shocks. Such shocks form in all strong stellar explosions and are responsible for the early electromagnetic emission released from these events. A key issue that has been overlooked in all previous works is the nature of the coupling between the charged leptons, that mediate the radiation force, and the ions, which are the dominant carriers of the shock energy. Our preliminary investigation indicates that in the case of relativistic shocks, as well as Newtonian shocks in multi-ion plasma, this coupling is driven by either, transverse magnetic fields of a sufficiently magnetized upstream medium, or plasma microturbulence if strong enough magnetic fields are absent. We discuss the implications for the shock breakout signal, as well as abundance evolution and kilonova emission in binary neutron star mergers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.