Abstract

Although electrolyte gating has been demonstrated to enable control of electronic phase transitions in many materials, long sought-after gate-induced insulator-metal transitions in organic semiconductors remain elusive. To better understand limiting factors in this regard, here we report detailed wide-range resistance-temperature ( R- T) measurements at multiple gate voltages on ionic-liquid-gated rubrene single crystals. Focusing on the previously observed high-bias regime where conductance anomalously decreases with increasing bias magnitude, we uncover two surprising (and related) features. First, distinctly cooling-rate-dependent transport is detected for the first time. Second, power law R- T is observed over a significant T window, which is highly unusual in an insulator. These features are discussed in terms of electronic disorder at the rubrene/ionic liquid interface influenced by (i) cooling-rate-dependent structural order in the ionic liquid and (ii) the intriguing possibility of a gate-induced glassy short-range charge-ordered state in rubrene. These results expose new physics at the gated rubrene surface, pointing to exciting new directions in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call