Abstract

Substantial differences in charge storage mechanisms exist between dielectric capacitors (DCs) and electrochemical capacitors (ECs), resulting in orders of magnitude difference of stored charge density in them. However, if ionic diffusion, the major charge transport mechanism in ECs, is confined within nanoscale dimensions, the Helmholtz layers and diffusion layers will overlap, resulting in dismissible ionic diffusion. An interesting contradiction between appreciable energy density and unrecognizable ionic diffusion is observed in solid-state capacitors made from reduced graphene oxide films that challenge the fundamental charge storage mechanisms proposed in such devices. A new capacitive model is proposed, which combines the two distinct charge storage mechanisms of DCs and ECs, to explain the contradiction, of high storage capacity yet undetectable ionic diffusion, seen in graphene oxide based supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.