Abstract

Buckling of thin-walled structures such as plates and shells is a consequence of in-plane stress being released through out-of-plane displacements. Generally, thin-walled structures that are subjected to tension or zero stress conditions remain stable. In this article, the anomalous tension buckling and stress-free active buckling of odd elastic plates are reported, which are a novel instability caused by odd elastic effects. The latter can only occur in the form of left- or right-handed chiral deformation and it does not involve external loads or internal active stress in a critical state. We demonstrate that the chiral rotation angle deformation is responsible for the active buckling of the plates, because the energy required for instability can be obtained based on the odd elastic effect. These findings can serve as an interpretation in a novel way for the occurrence of surface morphologies with biological activities, as well as provide references for buckling designs and applications of active structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call