Abstract

ABSTRACT In the standard active galactic nucleus (AGN) reverberation-mapping model, variations in broad-line region (BLR) fluxes are predicted from optical continuum variability (taken as a proxy for the ionizing continuum) convolved with a response function that depends on the geometry. However, it has long been known that BLR variability can deviate from these predictions. We analyse both extensive long-term Hβ and continuum monitoring of NGC 5548 and a large sample of high-quality Hβ light curves of other AGNs to investigate the frequency and characteristics of the anomalous responses of the BLR. We find that anomalies are very common and probably occur in every object. Onsets can be on a time-scale only slightly longer than the light-crossing time and durations are of the order of the characteristic time-scale of variability of the optical continuum to several times longer. Anomalies are larger when NGC 5548 is in a low state, but otherwise there is no correlation with continuum variability. There is abundant evidence for the optical continuum of AGNs varying independently of the higher-energy continua and this is sufficient to explain the anomalous responses of the total BLR flux. There are good reasons for believing that the frequent lack of correlation between spectral regions is due to anisotropic and non-axisymmetric emission. Rapid changes in line profiles and velocity-dependent lags are consistent with this. Motion of compact absorbing clouds across the line of sight is another possible cause of anomalies. The prevalence of anomalies should be considered when planning reverberation-mapping campaigns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.