Abstract

The existing consensus is that flocks are poised at criticality, entailing long correlation lengths and a maximal value of Shannon mutual information in the large-system limit. We show, by contrast, that for finite flocks which do not truly break ergodicity in the long-observation-time limit, mutual information may not only fail to peak at criticality —as observed for other critical systems— but also diverge as noise tends to zero. This result carries implications for other finite-size, out-of-equilibrium systems, where observation times may vary widely compared to time scales of internal system dynamics; thus it may not be assumed that mutual information locates the phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.