Abstract

We report ferromagnetic and spin wave resonance absorption measurements on high quality epitaxially grown Ga_{1-x}Mn_{x}As thin films. We find that these films exhibit robust ferromagnetic long-range order, based on the fact that up to seven resonances are detected at low temperatures, and the resonance structure survives to temperatures close to the ferromagnetic transition. On the other hand, we observe a spin wave dispersion which is linear in mode number, in qualitative contrast with the quadratic dispersion expected for homogeneous samples. We perform a detailed numerical analysis of the experimental data and provide analytical calculations to demonstrate that such a linear dispersion is incompatible with uniform magnetic parameters. Our theoretical analysis of the ferromagnetic resonance data, combined with the knowledge that strain-induced anisotropy is definitely present in these films, suggests that a spatially dependent magnetic anisotropy is the most likely reason behind the anomalous behavior observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.