Abstract

We present the first measurements of the attenuation of transverse sound in superfluid 3He-B. We use fixed path length interferometry combined with the magnetoacoustic Faraday effect to vary the effective path length by a factor of 2, resulting in absolute values of the attenuation. We find that attenuation is significantly larger than expected from the theoretical dispersion relation, in contrast with the phase velocity of transverse sound. We suggest that the anomalous attenuation can be explained by surface Andreev bound states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.