Abstract

We report on low temperature susceptibility and magnetization measurements made on single crystals of the recently discovered heavy-fermion superconductor UTe$_2$ and compare the results with the two ambient pressure ferromagnetic superconductors URhGe and UCoGe. Hysteresis curves in the superconducting phase show a familiar diamond shape superimposed on a large paramagnetic background. The Meissner state was measured by zero field cooling in small fields of a few Oe as well as ac susceptibility measurements in small fields and resulted in 100\% shielding, with a sharp transition. However the field cooling Meissner-Ochsenfeld effect (expulsion of flux) was negligible in fields greater than just a few Oe, but becomes nearly 30\% of the perfect diamagnetic signal when the field was reduced to 0.01~Oe. The critical current due to flux pinning was studied by ac susceptibility techniques. Over the range in fields and temperature of this study, no signature of a ferromagnetic transition could be discerned. The lower critical field $H_{\rm c1}$ has been measured along the three crystalographic axes, and surprisingly, the anisotropy of $H_{\rm c1}$ contradicts that of the upper critical field. We discuss this discrepancy and show that it may provide additional support for a magnetic field-dependent pairing mediated by ferromagnetic fluctuations in UTe$_2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.