Abstract

Aerogels are of interest for their ability to uniformly incorporate nanoscale features into macroscopic assemblies, which enabled applications that require low density, high surface area, and/or bicontinuous networks. The structure of the nanoporous network is intrinsically linked to the macroscopic properties of aerogels. Hence, control of this structure is of paramount importance. Small-angle X-ray scattering (SAXS) is used here to monitor nanoparticle aggregation in situ in Cu2(OH)3Br aerogels formed via epoxide-assisted gelation. Anomalous anisotropic aggregation is observed in the absence of templating agents and is attributed to the molecular structure of the inorganic nanoparticles themselves. This is a fundamental departure from the models currently used to describe traditional inorganic sol-gel chemistry where nanoparticles are believed to undergo isotropic diffusion- and/or kinetically limited aggregation. Time-resolved SAXS indicates that Cu2(OH)3Br nanoparticles nucleate rapidly from solution to form unbranched chain-like aggregates rather than branched mass-fractal aggregates. Sizes of primary particles (∼1.5 nm) and the chain-like structure of their aggregates are independent of particle concentration (gel density), while rates of particle aggregation, gelation time, and aggregate size are strongly dependent upon particle concentration, which implies that the chemistry of particle formation and the physics of particle aggregation are independent processes. Because the conditions necessary for creating anisotropic structures are not unique to Cu2(OH)3Br, these results could provide insight into the structure and gelation mechanisms of other inorganic aerogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call