Abstract
We use cobordism theory to analyse anomalies of finite non-abelian symmetries in 4 spacetime dimensions. By applying the method of ‘anomaly interplay’, which uses functoriality of cobordism and naturality of the η-invariant to relate anomalies in a group of interest to anomalies in other (finite or compact Lie) groups, we derive the anomaly for every representation in many examples motivated by flavour physics, including S3, A4, Q8, and SL(2, \U0001d53d3).In the case of finite abelian groups, it is well known that anomalies can be ‘truncated’ in a way that has no effect on low-energy physics, by means of a group extension. We extend this idea to non-abelian symmetries. We show, for example, that a system with A4 symmetry can be rendered anomaly-free, with only one-third as many fermions as naïvely required, by passing to a larger symmetry. As another example, we find that a well-known model of quark and lepton masses utilising the SL(2, \U0001d53d3) symmetry is anomalous, but that the anomaly can be cancelled by enlarging the symmetry to a ℤ/3 extension of SL(2, \U0001d53d3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.