Abstract
The temperature dependence of the speed of sound in crystalline mercury selenide with low concentrations of iron impurities is studied. Experiments are conducted in the ranges of concentration and temperature where hybridized electronic states in iron impurities have been observed previously. It is found that at temperatures below 10 K the speed of slow transverse ultrasonic waves has an anomalous nonmonotonic segment of its temperature variation that is related to the influence of the impurities and reflects the existence of hybridized states. The observed anomalies in the sound speed are described in terms of a theory for the electron contribution to the elastic moduli that includes hybridization of impurity states and electron-electron interactions. Fits of the theoretical dependences to the experimental data yield quantitative information on the parameters of the hybridized states and of the Fermi-liquid interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.