Abstract

To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.