Abstract
Titanium and its alloys are the most suitable metallic materials available for the fabrication of medical implants. Their biocompatibility can be improved by the growth of TiO2 nanotubes on their surface by a simple anodization process. This work involved an investigation into the anodization behavior of Ti–35Nb–7Zr–5Ta (TNZT) alloy, focusing on the effect of processing conditions (anodization time and type of electrolyte), previous strain hardening, and crystallographic texture of the substrate. Studies about the growth of TiO2 nanotubes on β-type titanium alloys, as the TNZT alloy, are rare in the literature. The TNZT alloy proved to be an excellent substrate for the growth of TiO2 nanotubes, resulting in threefold longer nanotubes than those obtained on a commercially pure (CP) Ti substrate. Moreover, TiO2 nanowires grew after 6 h of anodization in an organic electrolyte, which could not be achieved using the CP-Ti substrate. Samples with different crystallographic textures displayed similar nanotube morphology and only slight differences in grain length, indicating that grain orientation played only a minor role in the growth kinetics. Lastly, the crystallization of nanotubes at 450 °C did not alter their morphology, but caused complete detachment of the TiO2 nanotubes at 700 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.