Abstract

The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode. The effects of pH, scan rates, and concentration of the drug on the anodic peak current were studied. Voltammograms of gemifloxacin in Tris–HCl buffer (pH 7.0) exhibited a well-defined single oxidation peak. A differential-pulse voltammetric procedure for the quantitation of gemifloxacin has been developed and suitably validated with respect to linearity, limits of detection and quantification, accuracy, precision, specificity, and robustness. The calibration was linear from 0.5 to 10.0μM, and the limits of detection and quantification were 0.15 and 5.0μM. Recoveries ranging from 96.26% to 103.64% were obtained. The method was successfully applied to the determination of gemifloxacin in pharmaceutical tablets without any pre-treatment. Excipients present in the tablets did not interfere in the assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.