Abstract
AbstractDeveloping low‐cost oxygen evolution reaction (OER) catalysts with high efficiency and understanding the underlying reaction mechanism are critical for electrochemical conversion technologies. Here, an anodized Prussian blue analogue (PBA) containing Ni and Co is reported as a promising OER electrocatalyst in alkaline media. Detailed post‐mortem characterizations indicate the transformation from PBA to Ni(OH)2 during the anodic process, with the amorphous shell of the PBA facilitating the transformation by promoting greater structural flexibility. Further study with operando Raman and X‐ray photoelectron spectroscopy reveal the increase of anodic potential improves the degree of deprotonation of the transformed core‐shell PBA, leading to an increase of Ni valence. Density functional theory calculations suggest that the increase of Ni valence results in a continuous increase in the adsorption strength of oxygen‐containing species, exhibiting a volcano relationship against the OER activity. Based on the experiments and calculated results, an OER mechanism for the transformed product is proposed. The fully activated catalyst also works as the cathode and the anode for a water‐splitting electrolysis cell with a high output current density of 13.7 mA cm−2 when a cell voltage of 1.6 V applied. No obvious performance attenuation is observed after 40 h of catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.