Abstract
A simple and sensitive electrochemical sensor based on graphene quantum dot-modified pencil graphite electrode (GQD/PGE) was fabricated and used for highly selective and sensitive determination of copper (II) ions in nanomolar concentration by square wave adsorptive stripping voltammetric method. The sensing mechanism could be attributed to the formation of a complex between Cu2+ ions and oxygen-containing groups in GQDs which result in an increased SWV signal in comparison with the bare electrode. Optimization of various experimental parameters such as pre-concentration time, pre-concentration potential, pH, and buffer type which influence the performance of the sensor, was investigated. Under optimized condition, GQD-modified electrode has been used for the analysis of Cu2+ in the concentration range from 50 pM to 4 nM and a lower detection limit of 12 pM with good stability, repeatability, and selectivity. Finally, the practical applicability of GQD-PGE was confirmed via measuring trace amount of Cu (II) in water samples. The GQD/PGE surface could be regenerated by exerting more positive potentials than the stripping potential of the Cu (II) ion and then used for another deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.