Abstract

The mineralization of ketoprofen (KP) by anodic oxidation was studied by employing boron doped diamond (BDD) and Pt electrodes. The redox behavior of KP molecule, fouling of electrodes, generation of oxygen and active chlorine species were studied by cyclic voltammetry. The effect of electrolyte, pH of aqueous medium and applied current density on the mineralization behavior of KP was also investigated. The degradation and mineralization were monitored by UV–vis spectrophotometer and total organic carbon analyzer, respectively. The results were explained in terms of in situ generation of hydroxyl radical ( OH), peroxodisulfate (S 2O 8 2−), and active chlorine species (Cl 2, HOCl, OCl −). The physisorbed OH on BDD was observed to trigger the combustion of KP in to CO 2 and H 2O. The poor mineralization at both BDD and Pt anodes in the presence of NaCl as supporting electrolyte was ascribed to the formation of chlorinated organic compounds which are refractory. Complete mineralization of KP molecule was achieved using Na 2SO 4 as supporting electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.