Abstract
In this paper, the anodic electrogenerated chemiluminescence (ECL) behavior of graphite-like carbon nitride (g-C3N4) is studied using cyclic voltammetry with triethanolamine (TEA) as a coreactant. The possible anodic ECL response mechanism of the g-C3N4/TEA system is proposed. Furthermore, it is observed that the anodic ECL signal can be quenched efficiently in the presence of rutin, on the basis of which a facile anodic ECL senor for the determination of rutin is developed. This ECL sensor is found to have a linear response in the range of 0.20-45.0 μM and a low detection limit of 0.14 μM (at signal-to-noise of 3). These results suggest that semiconductor g-C3N4 has great potential in extending the application in the ECL field as an efficient luminophore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.