Abstract

A liter-scale microbial fuel cell with graphite rod electrode arrays (MFC-EA) was constructed and its relative anodic current distribution was investigated with 9 groups of anode electrodes. Meanwhile, the influences of COD concentration and ionic strength of anolyte on anodic current distribution were discussed. It is demonstrated that the electrode spacing between the anode segment and cathode significantly influenced the ohmic resistance distribution and the biomass content of each segment, further affected the anodic current distribution. A significantly uneven current distribution was found in MFC-EA, especially at high currents. The further the anode segment was away from the cathode, the smaller the segment current generation contributed to the total current. Consequently, a suitable MFC structure with equidistant electrode spacing will be a necessary consideration for large-scale MFC design. Moreover, for MFC-EA, improvement on the uneven current distribution was achieved by feeding the anolyte with a COD concentration of 1000mg COD L−1 or with 0.2M KCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.